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Direct or indirect? Graphical models for neural oscillators
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Abstract

Univariate and bivariate time series analysis techniques have enabled new insights into neural processes. However, these tech-
niques are not feasible to distinguish direct and indirect interrelations in multivariate systems. To this aim multivariate times series
techniques are presented and investigated by means of simulated as well as physiological time series. Pitfalls and limitations of these
techniques are discussed.
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1. Introduction

Time series analysis techniques such as synchroniza-
tion analysis [14] or cross-spectral analysis [4,18] are
established to analyze bivariate data sets. If more than
two signals are available, investigations based on pair-
wise combinations of the recorded data sets are still
the most often applied procedure. However, multivari-
ate data contain more information than those inferable
from multiple bivariate examinations. Moreover, pair-
wise analysis of multivariate data may yield misleading
results.

If for example one process influences two other, orig-
inally mutually independent processes, an influence be-
tween these two processes is also detected by bivariate
analysis techniques. In this case, the influence is medi-
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ated by the common process. When increasing the num-
ber of processes, more complex interrelation structures
can arise.

Therefore, time series analysis techniques that allow
to elucidate such interrelation structures are desired.
For cross-spectral analysis, several methods exist en-
abling to distinguish direct and indirect interrelations.
Partial coherence has been introduced as the multivari-
ate counterpart of coherence [3]. Graphical models
applying partial coherence provide a proper methodol-
ogy to estimate partial coherence and visualize its results
[5].

As coherence and partial coherence are symmetric
measures, an inference of directions of influences is
impossible. Information contained in phase spectra or
partial phase spectra are in general difficult to interpret.
Coherence and partial coherence, respectively, have to
be significant for a broad range of frequencies to draw
reliable conclusions about phase relations and therefore
direction of influences, which is rarely given for empiri-
cal time series [13].

Recently, partial directed coherence has been
introduced to deduce directions of interrelations in
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multivariate data sets [1]. Based on modeling the multi-
variate time series by vector autoregressive processes,
partial directed coherence enables differentiation of di-
rect and indirect interrelations. Directed graphical mod-
els summarize the network of influences estimated by
partial directed coherence analysis [6].

Within this paper, coherence, partial coherence, and
partial directed coherence as well as the methodology
of graphical models are discussed. We investigate abili-
ties and limitations by means of simulated time series.
As an example, an application to physiological time ser-
ies recorded from a patient suffering from essential tre-
mor is presented.
2. Methods

Within this section, coherence, partial coherence, and
partial directed coherence are summarized with respect
to their corresponding graphical models.

2.1. Cross-spectral analysis

To analyze relationships between two pro-
cesses cross-spectral analysis has been introduced.
Coherence

CohXY ðxÞ ¼
SXY ðxÞj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SXX ðxÞSYY ðxÞ
p 2 ½0; 1�

measures the linear relationship between processes X
and Y, where SXX(x) and SYY(x) denote the auto-spec-
tra of the processes, and SXY(x) the cross-spectrum be-
tween processes X and Y. Coherence assumes values
close to one if a linear filter exists between processes X
and Y. Values close to zero are present, if there is no
interrelation between the processes described by linear
filters [4].

As the cross-spectrum is a complex valued measure,
the phase spectrum UXY(x) can be defined as the argu-
ment of the cross-spectrum

SXY ðxÞ ¼ SXY ðxÞj jeiUXY ðxÞ

via its polar representation. Time delays between the
processes as well as filter properties can be estimated
using the information contained in the phase spectrum
UXY(x). A pure time delay d between X and Y would re-
sult in a linear phase relation UXY(x) = dx.

In case of finite time series coherence and phase spec-
tra can be estimated by applying these equations with
the estimators for the cross- and auto-spectra. Auto-
and cross-spectra themselves can be estimated through
various techniques. Often used techniques are, for exam-
ple, averaging periodograms calculated for equally sized
sections of the time series [8,9] or smoothing periodo-
grams [17]. To decide about the significance of estimated
coherence a critical value
s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

2
m�2

p
has been derived for a significance level a, where m is the
equivalent number of degrees of freedom and depends
on the estimation procedure of SXX(x), SYY(x), and
SXY(x) [2]. For the technique based on cutting the time
series into equally seized sections, the equivalent number
of degrees of freedom is m = 2L, where L is the number
of disjoint sections. For smoothing the periodogram
the equivalent number of degrees of freedom is
m ¼ 2=

Ph
i¼1w

2
i , where w denotes the smoothing function

evaluated at discrete wi and h is the width of the smooth-
ing function.

Similarly, a-confidence intervals

UðxÞ � ja

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
1

Coh2ðxÞ
� 1

" #vuut

for the phase U(x) can be derived, where ja is the
a-quantile of the standard Gaussian distribution [2].
Since m is fixed by the estimation procedure, no reliable
phase spectra can be estimated, if Coh2(x) is small com-
pared to one.

2.2. Partial coherence

Partial coherence has been introduced to differentiate
direct and indirect interrelations [5,3]. The underlying
idea is to subtract linear influences from other processes
to obtain the partial cross-spectrum

SXY jZðxÞ ¼ SXY ðxÞ � SXZðxÞS�1ZZ ðxÞSZY ðxÞ

between X and Y given all the linear information of the
remaining processes Z, that might be vector valued.
Analogously, SXXjZ(x) denotes the partial auto-spec-
trum leading to the definition of partial coherence

CohXY jZðxÞ ¼
SXY jZðxÞ
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SXX jZðxÞSYY jZðxÞ
p 2 ½0; 1�

and partial phase spectrum UXYjZ(x)

SXY jZðxÞ ¼ SXY jZðxÞ
�� ��eiUXY jZ ðxÞ.

For partial coherence the critical value

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

2
m�2L�2

p
can be calculated depending on the dimension L of Z
and m the equivalent number of degrees of freedom [18].

2.3. Partial directed coherence

Estimating the elements akj,r (k, j = 1, . . . ,n,
r = 1, . . . ,p) of the coefficient matrices ar of a n-dimen-
sional vector autoregressive process of model order p

(VAR[p])
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is the basic step of partial directed coherence analysis,
where ei is Gaussian distributed with covariance matrix
R. Therefor, a n-dimensional VAR[p]-process is fitted to
the empirical time series. Fourier transformation of the
coefficient matrices

AkjðxÞ ¼ dkj �
Xp

r¼1
akj;re�ixr

where dkj = 1 if k = j and dkj = 0 if k5 j, leads to the
definition of partial directed coherence

pi jðxÞ ¼
AijðxÞ
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k
A�kjðxÞAkjðxÞ

r

with (Æ)* denoting complex conjugation. Partial directed
coherence pi j is normalized between 0 and 1 and indi-
cates an influence from process Xj onto process Xi, if it
is non-zero. For finite time series a significance level has
recently been introduced [16]. A significant direction of
interrelation detected by partial directed coherence anal-
ysis has to be interpreted in terms of Granger causality,
i.e. that there is no reaction without a cause [7]. However,
there can be influencing processes which are not mea-
sured. In this case a conclusion to causality is impossible.

2.4. Graphical models

Graphical models serve as a proper methodology to
visualize and to enlighten multivariate interrelation
structures. In Fig. 1 three different graphs are shown
for an exemplary, five-dimensional system. All pro-
cesses, denoted as the vertices in the graphs are con-
nected by edges representing significant pairwise
coherences (a), partial coherences (b), and partial direc-
ted coherences (c). If, for example, a partial coherence
between X1 and X2 is non-significant, processes X1 and
X2 are interpreted as not mutually influencing each other
linearly and directly. Thus, an edge in the corresponding
X 1 X 2 

X 3 X 4

X 5

X 1

X 3

X 5

(a) (b)

Fig. 1. Graphical models for an illustrative, five-dimensional process. (a)
between each pairwise combination of processes denoted by the vertices, (b) so
(c) direction of interrelations between the processes are indicated by arrows
graphical model is missing between X1 and X2, if and
only if CohX 1X 2jZðxÞ ¼ 0. For directed graphical models
applying partial directed coherence edges are substituted
by arrows indicating the direction of the interrelation.

In the graph deduced from bivariate coherence anal-
ysis, all possible edges are present. In the graphical
model applying partial coherence, the edges between
processes X1 and X3, X2 and X3, as well as X3 and X4

are missing. These missing edges represent indirect inter-
relations between the corresponding processes, which
cannot be detected by pairwise coherence analysis. For
example, the edge between process X1 and X3 in (a) is
mediated by process X5, which can be inferred from
the graph applying partial coherence (b). X5 mediates
all influence between X3 and the remaining processes.
This property is defined as separation. In conclusion, a
system corresponding to the graph in Fig. 1(b) analyzed
by pairwise coherence would lead to the graph in
Fig. 1(a). In addition, the direction of the interrelation
is contained in the directed graph in Fig. 1(c).
3. Results

In the following, the differences of the three intro-
duced time series analysis techniques are illustrated by
means of simulated data and in an application to phys-
iological data sets recorded from one patient suffering
from essential tremor.

3.1. Application to simulated time series

Coherence analysis, partial coherence as well as par-
tial directed coherence are illustrated in application to
the following five-dimensional VAR[4]-process

X 1ðtÞ ¼ 0.4X 1ðt�1Þ� 0.5X 1ðt� 2Þþ0.4X 5ðt�1Þþg1ðtÞ
X 2ðtÞ ¼ 0.4X 2ðt�1Þ� 0.3X 1ðt� 4Þþ0.4X 5ðt�2Þþg2ðtÞ
X 3ðtÞ ¼ 0.5X 3ðt�1Þ� 0.7X 3ðt� 2Þ�0.3X 5ðt�3Þþg3ðtÞ
X 4ðtÞ ¼ 0.8X 4ðt�3Þþ 0.4X 1ðt� 2Þþ0.3X 2ðt�2Þþg4ðtÞ
X 5ðtÞ ¼ 0.7X 5ðt�1Þ� 0.5X 5ðt� 2Þ�0.4X 4ðt�1Þþg5ðtÞ
gi�Nð0;1Þ; i¼ 1; . . . ;5.
X 2

X 4

X 1 X 2

X 3 X 4

X 5

(c)

All edges are present denoting the presence of significant coherences
me edges are missing due to results from partial coherence analysis and
in the directed graph, obtained by partial directed coherence analysis.
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On the diagonal of Fig. 2, the spectra of the five pro-
cesses are shown. Above the diagonal pairwise estimated
coherence is shown, while below the diagonal partial
coherence is presented. The graph concluded from the
bivariate coherence analysis is the same as the one al-
ready used as an example in Fig. 1(a). Results of partial
coherence analysis are summarized in the graphical
model in Fig. 1(b). The partial coherence graph is in
agreement with the simulated influences within the
VAR[4]-process, as edges between processes X1 and
X3, X2 and X3, as well as between processes X3 and X4

are missing.
The simulated VAR[4]-processes, however, contains

more information than obtained from the partial coher-
ence graph. For instance, process X5 is influencing pro-
cess X1, while there is no direct influence from process
X1 onto process X5. The influence between processes
X1 and X5 is, thus, asymmetric. Partial directed coher-
ence analysis (Fig. 3) reflects these asymmetric influ-
ences. Again, the corresponding graph is shown in
Fig. 1(c).

For this analysis, the correct model order is chosen
for the fitted VAR[p]-process. On the diagonal the spec-
tra are presented, while the off-diagonal elements repre-
sent the partial directed coherences. Directed influences
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Fig. 2. Coherence and partial coherence for a simulated five-dimensional VA
In the lower left corner, partial coherences are shown. The significance level is
processes are shown. For bivariate coherence each pair of processes is cohe
column). In contrast, partial coherence is non-significant between process X1

as X3 and X4 (4th row/3rd column). This illustrates that there is no direct in
could thus be detected from process X1 onto the pro-
cesses X2 and X4, from process X2 onto process X4, from
process X4 onto process X5, and finally from process X5

onto processes X1, X2, and X3.
A comparison between the graphical model summa-

rizing these results and the simulated process illustrates,
that interrelations of the simulated VAR-process can be
reproduced correctly. Process X5 is not only separating
process X3 from the remaining processes, but process
X5 is projecting the informations contained in processes
X1, X2, X4, and X5 itself onto process X3. No influence
from process X3 enters any other process.

A parametric approach such as partial directed
coherence has some pitfalls and limitations. For exam-
ple the number of parameters and, thus, the order of
the fitted VAR[p] has to be small compared to the num-
ber of data points, otherwise a reliable parameter esti-
mation is impossible. Furthermore, the variance of the
noise in the estimated VAR model has to be equal to
the identity matrix. In Fig. 4 an example is shown in
which the variance of the stochastic, driving noise of
the second process is 2500 times higher than the variance
of the stochastic, driving noise of the remaining two pro-
cesses. The corresponding graph summarizes the simu-
lated interrelations in the system (a). Partial directed
y [Hz]
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5

R[4]-process. In the upper right corner bivariate coherences are shown.
denoted as the horizontal, gray line. On the diagonal the spectra of the
rent, for example coherence between process X1 and X3 (1st row/3rd
and X3 (3rd row/1st column), X2 and X3 (3rd row/2nd column), as well
terrelation between those processes.
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Fig. 3. Partial directed coherence for the simulated five-dimensional VAR[4]-process (off-diagonal). The significance level is the gray, almost
horizontal line. On the diagonal the spectra are shown. While coherence and partial coherence (Fig. 2) do not allow for inferring directed influences,
partial directed coherence indicates a directed interrelation structure in the system. For example, process X1 is influencing X2 (2nd row/1st column),
while process X2 is not influencing X1 (1st row/2nd column). Partial directed coherences reproduce the simulated system correctly.

B. Schelter et al. / Journal of Physiology - Paris 99 (2006) 37–46 41
coherence applied to this system detects spurious inter-
relations from process X1 and X3 onto process X2

(Fig. 4(b)), as the differences in the variance of the sto-
chastic, driving noise terms yield high errors on the
parameter estimations. A renormalization of the covari-
ance matrix R of the noise in the estimated VAR model
and subsequent application of partial directed coherence
leads to the results presented in Fig. 4(c). Only the valid
influences are significantly different from zero.

As partial directed coherence is developed to detect
and visualize directed influences in linear autoregressive
processes, it is not obvious that partial directed coher-
ence can be generalized to other classes of dynamic sys-
tems, especially non-linear systems.

To illustrate that partial directed coherence is feasible
to detect directed interrelations even in non-linear sys-
tems, partial directed coherence is applied to coupled,
stochastic Roessler oscillators [15].

_X j

_Y j

_Zj

0
B@

1
CA ¼ �xjY j � Zj þ

P
i
eji X i � X j

� �� �
þ rjgj

xjX j þ aY j

bþ ðX j � cÞZj

0
BBB@

1
CCCA

i; j ¼ 1; 2; 3; 4.

The parameters of the four oscillators are rj = 1,
x1 = 1.03, x2 = 0.97, x3 = 1.09, x4 = 0.91, a = 0.15,
b = 0.2, c = 10, and gj is Gaussian distributed white
noise. Only e13 = 0.05, e23 = 0.05, e32 = 0.05, and
e24 = 0.05 are different from zero. For the estimation
of interrelations between the four oscillators, partial di-
rected coherence is applied only to the X-components of
the simulated system.

Using a sufficiently large order of the VAR[p]-process
of p = 200, the coupling scheme is reproduced correctly
by partial directed coherence (Fig. 5). The large model
order is required by the non-linearities in the Roessler
system. In general, in case of an unknown system the
order of the fitted VAR[p]-process should be chosen
rather oversized than undersized. If the number of
parameters is too small, especially smaller than the time
lags between the processes, a correct conclusion to the
underlying structure of causal influences is impossible.
Note that the significance level increases with the order
of the fitted processes, preventing erroneous conclusions.

3.2. Application to essential tremor

So far, the discussed multivariate analysis techniques
have been applied to simulated time series. To illustrate
their performance in physiological applications, an
example of a patient suffering from essential tremor is
presented.

For unilaterally activated tremor, tremor correlated
cortical activity to the contralateral tremor side has
been revealed by magnetoencephalography (MEG) and
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Fig. 4. Partial directed coherence for a three-dimensional example of a VAR[2]-process. The variance of the stochastic, driving noise influence of the
second process is 2500 times higher than that of the remaining two. The simulated directed interrelations in the three-dimensional VAR-model are
shown in the graph (a). Spurious directed interrelations are found from process X1 onto process X2 and from process X3 onto process X2 caused by
the different variances of the stochastic noise influences (b). VAR-parameters show larger errors in this cases. (c) Partial directed coherence for the
same three-dimensional VAR[2]-process, but the variance of the stochastic noise influence of the second process is renormalized to one as for the
remaining two processes. The simulated causal connections are re-estimated from the time series. There is only a causal influence from process X2

onto process X1 and onto process X3.
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Fig. 5. Results of partial directed coherence analysis for a four-dimensional, stochastic Roessler system. Directed influences are present from process
X2 onto process X3, from process X3 onto process X1 and onto X2, as well as from process X4 onto process X2. The significance level indicated by the
almost horizontal, gray line is frequency dependent and may show small peaks at the oscillation frequency of the corresponding Roessler oscillators.
This leads for example to the fact that there is no significant influence from process X1 onto X3 even if there is a peak in the corresponding partial
directed coherence spectrum.
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electroencephalography (EEG) for Parkinson tremor
[19,10] and by electroencephalography for essential tre-
mor [11]. In bilaterally activated essential tremor, how-
ever, a more complex interrelation structure has been
observed by simultaneous electroencephalographic
recordings from the scalp and electromyographic
(EMG) recordings from the extensor muscles [12]. In
addition to contralateral coherences, also ipsilateral
coherences between the sensori-motor cortex and the
muscles have been detected.

For this investigation, eight patients were seated in a
comfortable chair having their forearms supported while
their hands were outstretched to activate tremor. Data
were sampled at 1000 Hz. The EEG data as well as the
EMG data were preprocessed applying a low-pass filter
of 200 Hz to avoid aliasing. Furthermore, the EMG was
high-pass filtered above 30 Hz to avoid movement arti-
facts and was rectified afterward. The EEG was high
pass filtered above 0.5 Hz to avoid baseline fluctuations.

Scalp electrodes over the left and right sensori-motor
cortex and the EMG of the left and right wrist extensor
are analyzed. The results are shown for one representa-
tive patient. Coherence as well as partial coherence anal-
ysis are presented in Fig. 6. For bivariate coherence
analysis, the right EMG is coherent with the left and
right EEG and the left EMG is coherent with the right
EEG. The ipsilateral connection between the right
EMG and the right EEG (Fig. 6 1st row/4th column)
is rather unlikely to be valid from a physiological point
of view. As partial coherence analysis demonstrates for
this patient (Fig. 6), the ipsilateral connection between
the right EMG and the right EEG is not direct and most
likely mediated by an inter-hemispheric coupling (Fig. 6
4th row/1st column).

Directions of the interrelations are determined using
partial directed coherence analysis (Fig. 7). Both direc-
tions from the cortex to the muscles and vice versa are
observed. A significant influence from the right EEG
onto the left EMG, from the left EMG onto the right
EEG, from the left EEG onto the right EMG, and from
the right EMG onto the left EEG is detected. Especially,
the partial directed coherence from the right EMG to
the left EEG is rather large.
4. Discussion

Bivariate analysis techniques, like coherence and syn-
chronization analysis, are limited by the impossibility to
distinguish direct and indirect interrelations between
processes in higher dimensional systems. Graphical
models applying partial coherence have been introduced
to elucidate more complex interrelation structures. As
it is usually impossible to determine the direction of
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influences by cross-spectral analysis techniques, a para-
metric approach has recently been proposed, the partial
directed coherence. Partial directed coherences enable to
infer directed influences in multivariate systems. How-
ever, they do not always allow for real causal inference,
as for example unobserved processes might have an
influence.

The abilities of coherence, partial coherence, and par-
tial directed coherence have been demonstrated by
means of simulated time series. Complex interrelation
structures could be correctly reestimated from simulated
time series. Even for an example of a non-linear system,
conclusions about the underlying interrelations have
been feasible.

Since partial directed coherence is a parametric ap-
proach, further pitfalls arise. Estimations of the neces-
sary order p of the VAR[p] is rather difficult. A
comparison of spectra from the parametric and non-
parametric approach can yield a hint for the appropriate
model order p. A significance level has recently been de-
rived [16], allowing to decide whether a partial directed
coherence value at the investigated frequency is signifi-
cantly different from zero. Especially, for higher orders
of p that introduce more variability to partial directed
coherences, the significance level prevents erroneous
conclusions about the interrelation structure. Finally,
as shown in this paper large variations of the covariance
matrix of the stochastic noise might lead to wrong con-
clusions about the underlying interdependence struc-
ture. High partial directed coherence values are not
necessarily indicating a dominant influence between
the corresponding processes. Valid influences are usually
underestimated in this circumstance, too. A renormal-
ization of the covariance matrix of the driving noise in
the fitted VAR-model is, thus, strongly recommended
to achieve comparable values for any partial directed
coherence spectrum.

In an application to bilaterally activated essential tre-
mor, an unexpected ipsilateral interrelation detected by
coherence analysis could be unmasked as an indirect
interrelation by partial coherence and partial directed
coherence analysis. It has recently been shown, that
the ipsilateral connection is most likely mediated by an
interhemispheric coupling [12]. Furthermore, partial di-
rected coherence analysis has enabled deeper insights
into the directions of interrelations. The partial directed
coherence from the right EMG to the left EEG is rather
large (Fig. 7). Basically, this is caused by the fact that
the signal-to-noise ratio for the right EMG is the high-
est. Moreover, partial directed coherence is normalized
by the Fourier transform of the coefficients of the outgo-
ing process. High partial directed coherences indicate
that a rather large fraction of the EMG is reflected in
the EEG. In contrast, if a signal like the EEG is contam-
inated by a huge amount of non-tremor related influ-
ences, the fraction of the signal related to tremor is
rather small leading to comparably small partial direc-
ted coherence values. In conclusion, it could be shown
that the cortex imposes its oscillatory activity on the
contralateral muscles via the corticospinal tract and that
additionally muscle activity is reflected to the contralat-
eral cortex via proprioceptive afferences.
5. Conclusion

Graphical models applying partial coherence and
partial directed coherence allow for deeper insights into
multivariate systems. The abilities of these multivariate
analysis techniques have been shown by means of simu-
lated as well as physiological time series. In the applica-
tion to essential tremor the knowledge about the
physiology underlying tremor has been extended com-
pared to results originating from bivariate coherence
analysis.
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